Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Waste Manag ; 120: 762-771, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33257134

RESUMO

Coffee pulp is one of the major underutilized byproduct of coffee processing in farm level. Disposal of this agro-industrial waste has become one of the most challenging tasks for coffee planters. However, most of the efforts are towards the management of coffee pulp as an effluent, and not-on re-use. The problem is compounded due to the large volumes produced in diluted forms, which makes it expensive to reuse. The preliminary proximate analysis of coffee pulp indicated it to be rich in pectin and polyphenols. The efficacy of various chemicals like ethanol, sulfuric acid, hydrochloric acid, nitric acid, ammonium oxalate and metal salts for effective precipitation of pectin from coffee pulp was evaluated. HPLC characterization of the extracted and concentrated polyphenols fractions was analyzed. The maximum extraction of pectin was achieved by using metal salts and ethanol with 6.0% and 6.7% on wet weight basis respectively. The equivalent weight of extracted pectin (1180.5 mg/g) was found to be higher than that of commercial pectin (724.8 mg/g). The methoxyl content of the commercial pectin and crude pectin were 9.3 and 5.6% respectively. Gallic, vanillin, catechin, ethyl catechol, coumaric, Caffeic, and ferulic acid were the major polyphenols as quantified by the HPLC. The polyphenol fraction showed a good antioxidant activity with phosphomolybdate, FRAP, DPPH, and ABTS radicals respectively. The sustainable utilization of coffee pulp as a source of pectin and polyphenols with good antioxidant activities could help to solve the problem of waste generated in coffee processing in farm level.


Assuntos
Café , Polifenóis , Antioxidantes , Cromatografia Líquida de Alta Pressão , Pectinas
2.
J Dairy Sci ; 103(8): 6830-6842, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32475665

RESUMO

In this study, we purified and characterized exopolysaccharide (EPS) produced by a high-EPS-producing dairy starter bacterium, Streptococcus thermophilus ASCC 1275. Crude EPS was extracted from S. thermophilus ASCC 1275 and partially purified using dialysis. Further purification and fractionation of exopolysaccharide was conducted using HPLC on a Superose 6 column (Cytiva/Global Life Sciences Solutions, Marlborough, MA). Glycosyl composition analysis, linkage analysis along with 1-dimensional and 2-dimensional nuclear magnetic resonance spectroscopy were performed to deduce the structure of EPS. Three fractions (F) obtained from gel permeation chromatography were termed F1 (2.6%), F2 (45.8%), and F3 (51.6%) with average molecular weights of approximately 511, 40, and 5 kDa, respectively. Monosaccharide composition analysis revealed the dominance of glucose, galactose, and mannose in all 3 fractions. Major linkages observed in F3 were terminal galactopyranosyl (t-Gal), 3-linked glucopyranosyl (3-Glc), 3-linked galactofuranosyl (3-Galf), and 3,6-linked glucopyranosyl (3,6-Glc) and major linkages present in F2 were 4-Glc (48 mol%), followed by terminal mannopyranosyl (t-Man), 2- + 3-linked mannopyranosyl (2-Man+3-Man), and 2,6-linked mannopyranosyl (2,6-Man; total ∼28 mol%). The 1-dimensional and 2-dimensional nuclear magnetic resonance spectroscopy revealed that F2 comprised mannans linked by (1→2) linkages and F3 consisted of linear chains of α-d-glucopyranosyl (α-d-Glcp), ß-d-glucopyranosyl (ß-d-Glcp), and ß-d-galactofuranosyl (ß-d-Galf) connected by (1→3) linkages; branching was through (1→6) linkage in F3. A possible structure of EPS in F2 and F3 was proposed.


Assuntos
Polissacarídeos Bacterianos/química , Streptococcus thermophilus/química , Galactose/química , Glucose/química , Espectroscopia de Ressonância Magnética , Mananas/química , Peso Molecular , Polissacarídeos Bacterianos/isolamento & purificação , Conformação Proteica
3.
Sci Rep ; 10(1): 807, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31964939

RESUMO

Streptococcus thermophilus ASCC 1275 has two chain length determining genes - epsC and epsD- in its eps gene cluster, and produces two times more EPS in sucrose medium than that in glucose and lactose. Hence, we investigated the influence of sugars (glucose, sucrose and lactose), at log phase (5 h) and stationary phase (10 h), on the global proteomics of S. thermophilus 1275 to understand the differentially expressed proteins (DEPs) during EPS production using isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomic analysis. Among 98 DEPs in sucrose medium, most of them were mapped into EPS biosynthesis pathway and other related metabolisms. There was an upregulation of several proteins involved in sugar transport (phosphoenolpyruvate (PEP) phosphotransferase system), EPS assembly (epsG1D) and amino acid metabolism (methionine, cysteine/arginine metabolism) in sucrose medium. This study showed that increased EPS production in S. thermophilus 1275 requires a well-co-ordinated regulation of pathway involved in both EPS assembly and amino acid metabolism along with the availability of sugars. Thus, it provided valuable insights into the biosynthesis and regulation of EPS in S. thermophilus 1275, and potential gene targets for understanding high-EPS strains.


Assuntos
Proteínas de Bactérias/metabolismo , Polissacarídeos Bacterianos/biossíntese , Streptococcus thermophilus/metabolismo , Aminoácidos/metabolismo , Proteínas de Bactérias/genética , Transporte Biológico , Polissacarídeos Bacterianos/genética , Proteômica/métodos , Reprodutibilidade dos Testes , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Streptococcus thermophilus/crescimento & desenvolvimento , Açúcares/metabolismo
4.
Indian J Med Ethics ; V(4): 1-9, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-34018957

RESUMO

A highly fatal emerging zoonotic virus, Nipah Virus (NiV), identified as a potential threat to global health security and declared as a candidate for bioterrorism by the World Health Organization (WHO) was first reported in the South Indian district of Kozhikode, Kerala, on May 20, 2018. Following the declaration of an outbreak, emergency control measures, contact tracing, isolation, and barrier nursing were implemented by the state health department. Since no prophylactic drugs or vaccines are available to prevent further transmission, the healthcare teams responded by initiating contact tracing and isolation, the only measures available. There were 2642 contacts that included 40% hospital contacts (185 doctors, 476 nurses, 344 other hospital staff). Quarantine and isolation of healthy persons, especially healthcare workers, involve certain ethical issues. We present an ethical analysis and discussion of contact tracing during the Nipah outbreak in Kerala, based on six principles of public health ethics, namely justice, beneficence and utility, respect for persons, reciprocity and solidarity. Several knowledge gaps and ethical issues that arose should be understood and addressed in future outbreaks. Setting up decision making systems and procedures in advance is the best way to ensure that ethically appropriate decisions will be made during such future outbreaks.


Assuntos
Pessoal de Saúde/psicologia , Infecções por Henipavirus/epidemiologia , Vírus Nipah , Alocação de Recursos/ética , Surtos de Doenças , Humanos , Índia/epidemiologia
5.
Front Microbiol ; 10: 1975, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31507577

RESUMO

Exopolysaccharide (EPS) produced from dairy bacteria improves texture and functionalities of fermented dairy foods. Our previous study showed improved EPS production from Streptococcus thermophilus ASCC1275 (ST1275) by simple alteration of fermentation conditions such as pH decrease (pH 6.5 → pH 5.5), temperature increase (37°C → 40°C) and/or whey protein isolate (WPI) supplementation. The iTRAQ-based proteomics in combination with transcriptomics were applied to understand cellular protein expression in ST1275 in response to above shifts during milk fermentation. The pH decrease induced the most differentially expressed proteins (DEPs) that are involved in cellular metabolic responses including glutamate catabolism, arginine biosynthesis, cysteine catabolism, purine metabolism, lactose uptake, and fatty acid biosynthesis. Temperature increase and WPI supplementation did not induce much changes in global protein express profiles of ST1275 between comparisons of pH 5.5 conditions. Comparative proteomic analyses from pairwise comparisons demonstrated enhanced glutamate catabolism and purine metabolism under pH 5.5 conditions (Cd2, Cd3, and Cd4) compared to that of pH 6.5 condition (Cd1). Concordance analysis for differential expressed genes (DEGs) and DEPs highlighted down-regulated glutamate catabolism and up-regulated arginine biosynthesis in pH 5.5 conditions. Down regulation of glutamate catabolism was also confirmed by pathway enrichment analysis. Down-regulation of EpsB involved in EPS assembly was observed at both mRNA and protein level in pH 5.5 conditions compared to that in pH 6.5 condition. Medium pH decreased to mild acidic level induced cellular changes associated with glutamate catabolism, arginine biosynthesis and regulation of EPS assembly in ST1275.

6.
Front Microbiol ; 9: 1919, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30177921

RESUMO

In a previous study, incorporation of high exopolysaccharide (EPS) producing dairy starter bacterium Streptococcus thermophilus ASCC 1275 was found to improve functionality of low fat mozzarella cheese and yogurt. This bacterium in its eps gene cluster has a unique pair of chain length determining genes, epsC- epsD, when compared to other sequenced S. thermophilus strains. Hence, the aim of this study was to understand the regulatory mechanism of EPS production in this bacterium using transcriptomic analysis to provide opportunities to improve the yield of EPS. As sugars are considered as one of the major determinants of EPS production, after preliminary screening, we selected three sugars, glucose, sucrose and lactose to identify the EPS producing mechanism of this bacterium in M17 medium. Complete RNA-seq analysis was performed using Illumina HiSeq 2000 sequencing system on S. thermophilus 1275 grown in three different sugars at two-time points, 5 h (log phase) and 10 h (stationary phase) to recognize the genes involved in sugar uptake, UDP-sugar formation, EPS assembly and export of EPS outside the bacterial cell. S. thermophilus 1275 was found to produce high amount of EPS (∼430 mg/L) in sucrose (1%) supplemented M17 medium when compared to other two sugars. Differential gene expression analysis revealed the involvement of phosphoenolpyruvate phosphotransferase system (PEP-PTS) for glucose and sucrose uptake, and lacS gene for lactose uptake. The pathways for the formation of UDP-glucose and UDP-galactose were highly upregulated in all the three sugars. In the presence of sucrose, eps1C1D2C2D were found to be highly expressed which refers to high EPS production. Protein homology study suggested the presence of Wzx/Wzy-dependent EPS synthesis and transport pathway in this bacterium. KEGG pathway and COG functional enrichment analysis were also performed to support the result. This is the first report providing the transcriptomic insights into the EPS production mechanism of a common dairy bacterium, S. thermophilus.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...